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MONTE CAEGO COMPUTATION OF THE STATISTICS 

OF THE MIDCOURSE VELOCITY CORRECTIONS 

FOR A LUNAR MISSION 

By Gerald L. Smith and Burnett L. Gadeberg 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

A Monte Carlo method i s  described f o r  obtaining the s t a t i s t i c s  of the  
t o t a l  ve loc i ty  cor rec t ion  employed i n  the  mult icorrect ion midcourse guidance 
of a space vehicle .  The problem i s  analyzed t o  show the s t a t i s t i c a l  cor re la -  
t i o n  which e x i s t s  between successive cor rec t ions  and t o  develop equations 
necessary f o r  implementing a Monte Carlo computer program. Covariance matri- 
ces of the  individual  correct ions,  computed by means of p r i o r  simulation of 
the problem, a r e  required as inputs  t o  the program. 

Results are given f o r  the appl ica t ion  of the technique t o  the midcourse 
guidance phase of a circumlunar f l i g h t  having f i v e  ve loc i ty  correct ions.  
Analysis of the results ind ica tes  tha t  commonly used est imates  of f u e l  
requirements from ca lcu la ted  r m s  v e l o c i t y  correct ions may r e s u l t  i n  an exces- 
s ive  f u e l  load. 

INTRODUCTION 

The problem of determining the amount of f u e l  required f o r  midcourse 
guidance of a lunar  o r  in te rp lane tary  vehicle  can be a c r i t i c a l  one. Su f f i -  
c i en t  f u e l  must  be provided t o  ensure the p robab i l i t y  of mission success; how- 
ever, too much f u e l  could mean t h a t  the payload i s  diminished and the  mission 
l e s s  p ro f i t ab le .  Thus, methods f o r  accura te ly  computing the f u e l  requirement 
a r e  of considerable i n t e r e s t .  

I n  general, t h i s  i s  a s t a t i s t i c a l  problem since the  f a c t o r s  which a f f e c t  
f u e l  usage on a p a r t i c u l a r  f l i g h t  are random var iab les  - namely, the in j ec t ion  
e r ro r s ,  navigation e r ro r s ,  and ve loc i ty  cor rec t ion  implementation e r r o r s .  
Thus, the exact  amount of f u e l  needed f o r  the mission cannot be computed 
beforehand and f u e l  tankage must be based on s t a t i s t i c a l  averages. 

A corrrmon procedure which has been used f o r  e s t ab l i sh ing  f u e l  requirements 
i s  t o  (1) obta in  rms values f o r  the  individual  ve loc i ty  correct ions by a com- 
puter  simulation similar t o  that described i n  references 1 and 2, (2)  add 
these t o  obta in  an rms f igure  f o r  the t o t a l  AV, and (3) assume three  times 
t h i s  t o t a l  as the  amount of ve loc i ty  cor rec t ion  t o  plan on f o r  an adequate 
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probab i l i t y  of success. Often the success p robab i l i t y  f igu re  quoted f o r  t h i s  
method i s  99.74 percent,  which i s  the three-sigma f igu re  f o r  a gaussian d i s -  
t r i bu t ion .  There are two things wrong with t h i s  procedure. F i r s t ,  when there  
i s  cor re la t ion  between successive ve loc i ty  correct ions,  the r m s  value of the  
t o t a l  i s  less than the  sum of the r m s  values of the  individual  correct ions.  
Second, s ince the  t o t a l  AV has a nonzero mean and i s  nongaussian, the suc- 
cess p robab i l i t y  i s  a c t u a l l y  grea te r  than 99.74 percent.  
w i l l  result i n  es t imat ing a grea te r  amount of f u e l  than i s  necessary f o r  a 
spec i f ied  mission success probabi l i ty .  

Thus, t h i s  procedure 

To obtain a b e t t e r  measure of f u e l  requirements, a more accurate method 
of determining the  s t a t i s t i c s  of the  ve loc i ty  correct ions i s  necessary. I n  
t h i s  paper, a p r a c t i c a l  Monte Carlo technique i s  described which can give the 
desired s t a t i s t i c a l  information. Also, by examination of some r e s u l t s  
obtained using t h i s  method, an approximate ru l e  similar t o  the three-sigma 
gaussian r u l e  i s  developed f o r  i n t e rp re t ing  rms f igu res  i n  terms of probabil-  
i t y  of success. 

NOTATION 

B i  guidance l a w  matrix for i t h  ve loc i ty  correct ion 

E[ 1 expected value of [ 1 

H a por t ion  (submatrix) of M 

K weighting matrix i n  estimation equations 

M matrix of p a r t i a l  der iva t ives  i n  es t imat ion equations 

n noise, or e r ro r ,  i n  observations 

p(v  = , . . . , vn )  j o i n t  p robab i l i t y  densi ty  funct ion of the  random var iab les  
v i , .  . . ,vn 

Q matrix of eigenvectors 
m 

( )'I 

t time 

AV the  sum of the magnitudes of the  v i  

nvrms 

transpose of a matrix 

r m s  value of AV 

e r r o r  i n  implementing v i  

i t h  ve loc i ty  correct ion 

Vcei 

vi 

2 



X 

xx 
,., 
X 

A 
xi 

hi 
xi 

measurement of vi 

e r r o r  i n  measurement of v i  

rms value of v 

s t a t e  vector  (vehicle  pos i t i on  and ve loc i ty)  

augmented s t a t e  vector  

e r r o r  i n  es t imate  of x, x - x 
A 

est imate  of x based on a l l  observations preceding the i t h  
ve loc i ty  cor rec t ion  

est imate  of x j u s t  a f t e r  the i t h  ve loc i ty  correct ion 

change i n  x due t o  observations i n  the  i n t e r v a l  between the 
A 

(i - 1) and i t h  ve loc i ty  correct ion 

observation vector  

standard deviat ion 

s t a t e  t r a n s i t i o n  matrix between the  (i  - 1) and i t h  ve loc i ty  
correct ion 

ANALYSIS 

Statement of the Problem 

The ana lys i s  presented herein can apply t o  the midcourse phase of any 
type of space f l i g h t  i n  which impulsive ve loc i ty  correct ions a re  employed. 
However, f o r  the purpose of i l l u s t r a t i n g  the method, we assume here a circum- 
lunar  mission and a self-contained on-board navigation and guidance system of 
the type described i n  references 1, 2, and 3. The t r a j e c t o r y  of the  example 
case and the schedule of observations and ve loc i ty  correct ions employed are  
shown i n  f igu re  1. 

The f i v e  ve loc i ty  cor rec t ion  vectors  i n  t h i s  schedule may be defined as 
v1,v2,. . . ,vg. Then define 

. . .  
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as the t o t a l  midcourse correct ion.  The amount of f u e l  used i n  the f i v e  cor: 
rec t ions  i s  proport ional  t o  AV i f  the  m a s s  of the vehicle  i s  constant.’ 
For a s t a t i s t i c a l  descr ip t ion  of the  guidance system performance, the statis-  
t i c s  of AV a r e  required.  For instance,  t o  determine the amount of f u e l  
tankage t o  be provided f o r  midcourse guidance f u e l ,  one might want t o  know 
the  p robab i l i t y  t h a t  AV w i l l  not exceed a given value,  t h a t  i s ,  Pr[AV - < R] .  

I n  a l l  t h a t  follows it i s  usefu l  t o  make the  reasonable assumption t h a t  
the ind iv idua l  midcourse ve loc i ty  cor rec t ions  have mul t ivar ia te  gaussian 
d i s t r ibu t ions  s ince t h i s  makes it possible  t o  describe the  d i s t r ibu t ions  com- 
p l e t e l y  by covariance matrices.  Furthermore, even i f  the  v1 a r e  not 
gaussian, only the covariance matrices a r e  required i f  merely second-order 
s t a t i s t i c s  of AV are t o  be obtained. Thus, the  results obtained herein a r e  
universa l ly  cor rec t  f o r  gaussian vi 
s t a t i s t i c s  f o r  a r b i t r a r y  v i  d i s t r ibu t ions .  

and cor rec t  i n  regard t o  second-order 

Description of AV S t a t i s t i c s  by Means of a J o i n t  Density Function 

Computing AV s t a t i s t i c s  by any method requi res  a knowledge, e i t h e r  
e x p l i c i t  o r  imp l i c i t ,  of the j o i n t  p robab i l i t y  dens i ty  function, p(v1,. . . ,v5).  
I f  the v i  a r e  gaussian with zero mean, then t h i s  dens i ty  funct ion i s  com- 
p l e t e l y  described by the covariance matrix 

T EVV = 

EvlvlT T Ev1v5 

The ( 3  X 3) submatrices along the diagonal, Evivi T , a re  the covariance m a t r i -  
ces of  the individual  ve loc i ty  correct ions.  The off-diagonal (3  x 3) sub- 
matrices depend upon the  cor re la t ion  between d i f f e r e n t  ve loc i ty  correct ions.  
Reference 2 gives the equations f o r  the  numerical computation of the EviviT, 
but some addi t iona l  analysis ,  which w i l l  be given l a t e r ,  i s  required t o  ind i -  
cate  how the  o ther  covariance matrices may be computed. 

Before proceeding with the ana lys i s  w e  w i l l  f i n d  it usefu l  t o  discuss 
the physical reasons f o r  the  exis tence of co r re l a t ion  between the  individual  
ve loc i ty  correct ions.  Such cor re la t ion  w i l l  e x i s t  whenever the  knowledge of 
the vehicle  s t a t e  following a correct ion i s  s u f f i c i e n t  t o  compute a nonzero 
ve loc i ty  cor rec t ion  a t  a l a t e r  time. I n  the  present  problem t h i s  condition 
may arise i n  any one of th ree  ways. 
cor rec t ion  i s  imperfect ly  executed. However, s ince the  correct ion i s  

=For a nonconstant mass vehicle ,  t o t a l  f u e l  i s  proport ional  t o  a 

F i r s t ,  each ind ica ted  ( o r  commanded) 

_ _  - ~- _ _  - ~ __ 

weighted sum of the  I V i  I. This i s  a somewhat more complicated problem but 
one which can be solved by appl ica t ion  of the  techniques herein described. 
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monitored, the e r r o r  i s  assumed known2 and thus contr ibutes  t o  the  correct ions 
made a t  succeeding times. Secondly, the guidance l a w  employed by the  guidance 
system i s  general ly  designed t o  n u l l  some component of miss a t  a fu tu re  point .  
I f  a t  any time during the f l i g h t  t h i s  a i m  poin t  i s  changed, information i s  
already present  within the  system, without f u r t h e r  observations of the  tra- 
jectory,  t o  make a correct ion based on the new a i m  point .  For instance,  i n  
the circumlunar mission guidance system described i n  reference 2, the  i n i t i a l  
a i m  point  i s  a prescr ibed per i lune,  and ve loc i ty  correct ions a r e  computed t o  
n u l l  the estimated pos i t i on  deviat ion a t  t h i s  point ,  without regard t o  the 
ve loc i ty  deviat ion which w i l l  e x i s t  upon a r r i v a l .  When per i lune i s  reached, 
the  a i m  po in t  i s  then changed t o  a prescr ibed v i r t u a l  perigee.  The uncor- 
rec ted  ve loc i ty  deviat ion a t  per i lune obviously would produce a m i s s  a t  pe r i -  
gee which could be corrected,  within the knowledge ava i lab le  t o  the  system. 
This correct ion then appears as p a r t  of the  f i r s t  cor rec t ion  after per i lune 
passage and is ,  of course, cor re la ted  with a l l  the correct ions made before 
se l ec t ion  of the  new a i m  c r i t e r i o n .  

The t h i r d  s i t u a t i o n  i n  which co r re l a t ion  between correct ions m y  a r i s e  
i s  when a l l  of the ind ica ted  cor rec t ion  i s  not applied.  This i s  a matter of 
guidance l o g i c  which does not  apply i n  the present  study because the  assumed 
guidance l a w  i s  a fu l l - co r rec t ion  scheme i d e n t i c a l  t o  t h a t  described i n  r e f -  
erence 2. 

The problem i s  now t o  develop equations f o r  the  covariance matrices 
Ev .v which describe the  cor re la t ion  between individual  ve loc i ty  correc- 
t i o n s .  It i s  of i n t e r e s t  t o  note t h a t  i n  another paper on the s t a t i s t i c s  of 
midcourse ve loc i ty  correct ions ( r e f .  4), the  t r u e  character  of t h i s  cor re la -  
t i o n  i s  not recognized. 
our ana lys i s ,  s p e c i f i c a l l y  i n  the development given i n  the  appendix where the  
nature of the e r r o r  w i l l  be discussed. 

l j  

The error i n  reference 4 w i l l  be apparent la ter  i n  

To begin the ana lys i s ,  we note tha t  the  f i r s t  ve loc i ty  cor rec t ion  can be 
described by the expression3 

A 
where B 1  i s  the guidance l a w  matrix a t  time t, x1 i s  the estimated s t a t e  
vector a t  time t, and vcel i s  the e r r o r  i n  executing the correct ion.  
After  the correct ion,  the est imate  x becomes A . 

2Errors i n  measuring o r  monitoring the  correct ions a re  assumed negl ig i -  

'In equation (3)  and those which follow, the  ve loc i ty  vectors  are 
b l e  i n  t h i s  paper. 

regarded formally as six-component state vectors  with zero values f o r  the  
f i r s t  three  (pos i t i on )  components. The B matrix i s  then formally a ( 6  x 6) 
with zeros i n  the f i r s t  three  rows. 

5 
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where vml i s  the  measurement of the  correct ion,  and Vmel i s  the  e r r o r  i n  
measuring the  correct ion.  I n  the  present  s tudy it i s  assumed t h a t  vme<<Vcey 
so t h a t  from t h i s  po in t  on f o r  p r a c t i c a l  s impl i c i ty  vmel i s  dropped, and 
equation (4)  i s  r ewr i t t en  

A 
Note t h a t  x1 and Vcel 
the  covariance matrices of which are computed i n  the  machine programs used t o  
obta in  the  r e s u l t s  reported i n  references 1 and 2. 

are (by assumption) uncorrelated random var iab les ,  

The equation f o r  v2 i s  of t he  same form as equation (3 ) :  

A 
and, j u s t  as f o r  t he  f i r g t  ve loc i ty  correct ion,  x 2  and vce2 
uncorrelated.  However, x2 i n  general  i s  co r re l a t ed  with v1. That is ,  i f  
x1 from equation (5 )  were updated t o  the  t i m e  of the  second cor rec t ion  by 
means of t he  6 x 6 t r a n s i t i o n  T t r i x  
v e l o c i t y  cor rec t ion  B 2 @ ( t 2 , t l ) x i ,  which i s  obviously cor re la ted  with v1. 
I n  f a c t ,  t h i s  i s  the  only p a r t  of v2 which i s  co r re l a t ed  with vl, as i s  
shown i n  the appendix. It i s ,  therefore ,  convenient f o r  the  purposes of our  
ana lys i s  t o  rewrite equation (6)  as 

a re  assumed 

A 1  

Q(t2,tl), it could be used t o  compute a 

It i s  seen t h a t  t he  bracketed term i n  (7)  can be described as the  change i n  
the  s ta te  estimate due t o  the  sequence of observations between the  f i r s t  and 
second ve loc i ty  cor rec t ions .  
would be equal t o  the  updated estimate 
would then be zero . )  

n (Note t h a t  i f  t he re  were no observations,  x2 
@(t2,tl)$; and the bracketed t e r m  

This t e r m  i s  thus appropr ia te ly  defined as 

where the  shorthand notat ion Q(t2,tl) = @2 has been employed. It may be 
f u r t h e r  noted t h a t  s ince  the  estimate i s  assumed t o  be zero a t  the  beginning 
of the  midcourse guidance problem, say a t  in j ec t ion ,  x1 can be defined l i k e -  
w i s e  as a change i n  the  s t a t e  estimate, 

n 

A n 
Ax1 = x1 (9) 

A I  
If de f in i t i ons  (8) and (9)  are used, and equation ( 5 )  i s  subs t i t u t ed  f o r  
i n  the second t e r m  on the  r i g h t  of equation (7), the  expressions f o r  t he  
f i r s t  two ve loc i ty  correct ions become: 

x1 

6 



Continuing i n  l i k e  manner f o r  the  th i rd -co r rec t ion ,  one obtains  

The p a t t e r n  i s  appareRt. 
the  random vectors  
equations (lo), (ll), and (12) are a l l  s t a t i s t i c a l l y  uncorrelated with each 
other ,  a property which i s  proved i n  the  appendix. 

Each ve loc i ty  cor rec t ion  can be wr i t ten  i n  terms of 
Axi and vcei. The random vectors  on the  r i g h t  s ide  of 

With the  expressions f o r  the  v e l o c i t y  correct ions Av1,...,v5 wri t t en  i n  
A t e r m s  of the  t e n  uncorrelated random vectors  

equations f o r  t he  covariance matrices 
e a s i l y  i n  t e r m s  of the  covariance matrices 
For instance,  

Axl,...,Ax5, vcel,. . . ,vce5, 
E v i v j T  ,,in ( 2 )  can be wr i t ten  qu i t e  

FQxiLGiT and EvCeivceiT, i=  1,...5. 

(13) ~ v l v l ~  = B ~ C F A X ~ A X ~  A A T  1 ~ 1 ~  + ~ ~ v c e ~ v c e , T I  

T T T  E ~ ~ 7 . r ~ ~  = B 1  [&lAxlT1 (I  + B1)  O2 B2 
A 

Numerical values f o r  these covariance matrices can be computed f o r  any 
p a r t i c u l a r  assumed s i t u a t i o n  as an adjunct t o  the  machine program used t o  s i m -  
u l a t e  the  midcourse guidance problem. Thereby, the  covariance matrix EvvT 
of expression ( 2 )  can be constructed.  

Numerical In t eg ra t ion  t o  Obtain AV S t a t i s t i c s  

Having the  j o i n t  dens i ty  funct ion,  determined as described above, one 
may proceed t o  the  computation of any des i red  s t a t i s t i c  of AV by in t eg ra t ion  
over the 15-dimensional space of t he  v i .  For instance,  the  mean value of 
AV i s  obtained from the  evaluat ion of the  mult iple  i n t e g r a l  

00 00 

E4V = s. . . f AVp(v1, . . ., v5) dv11, . . ., dv55 
--oo -03 

O f  course, i n  general  such an  in t eg ra t ion  would have t o  be done numeri- 
c a l l y  and the  r e s u l t s  would not  l i k e l y  be very sa t i s f ac to ry ,  e i t h e r  i n  regard 
t o  accuracy or the  machine t i m e  required f o r  the  job. This d i f f i c u l t y  pro- 
vides  the  motivation for employing a Monte Carlo approach as described i n  the  
next sect ion.  

7 



The Monte Carlo Method 

The Monte Carlo method i s  a scheme t h a t  generates AV samples which are 
From consis tent  with the  precomputed s t a t i s t i c s  of the  random var iab les  

a l a rge  co l l ec t ion  of such AV samples, any s t a t i s t i c a l  parameter desired may 
be ca lcu la ted  by a s t ra ightforward s t a t i s t i c a l  ana lys i s .  

v i .  

Actual simulation of many complete f l i g h t s  f o r  generating such samples 
would be unthinkable because of the  huge amount of computing time required.  
Fortunately,  t h i s  i s  not necessary. I n  a s ing le  simulation run the  statis-  
t i c s  (covariance matr ices)  of a l l  the uncorrelated random var iab les  which 
determine AV can be computed. A l l  t h a t  i s  needed then i s  t o  randomly pick 
values f o r  these var iab les  consis tent  with the  computed s t a t i s t i c s  and com- 
pute a AV 
AV. This i s  a r e l a t i v e l y  simple computational procedure and may be repeated 
many thousands of times without using excessive machine time. 

using the  funct ional  r e l a t ionsh ip  (1) between these var iab les  and 

Equations (10) , (11) , (12), e t c . ,  could be used i n  the machine program. 
However, i t  i s  a b i t  simpler t o  employ more bas ic  expressions derived from 
equations (3)  , ( 4 )  , and (8) .  For each ve loc i ty  correct ion the following s e t  
of equations appl ies :  

The computationAof a sample AV 
where = xo = 0 by assumption. A random Ax1 and vcel 
and used i n  equations (15) and (16).  The computxd x1 from equation (17) i s  
then,,used, together  with new random var iab les  
and x2, and the  process repeated through a l l  the correct ions.  The t o t a l  cor- 
r ec t ion  AV i s  then formed from 

begins with the f i r s t  cor rec t ion  (i = l), 
are  generated A 

A 

t o  compute v2 ce2, Ax2 and v 

and s tored.  Repeating t h i s  sequence many times gives the  required AV 
col lec t ion .  

A s  s t a t e d  above, the Monte Carlo computations require  the se lec t ion  of 
random vectors  cons is ten t  with the second-order s t a t i s t i c s  of the  random var- 
i ab le s  which comprise the ve loc i ty  correct ions.  The procedure f o r  doing t h i s  
i s  as follows. 
i t a l  computer subrout ine) ,  which we may incorporate i n t o  the computer program. 
This subroutine generates a sequence of numbers having a gaussian d i s t r ibu t ion  
with zero mean and u n i t  s tandard deviat ion.  The numbers a re  a l l  independent, 
t h a t  is ,  uncorrelated with one another.  A s e t  of six of these numbers may be 

We start  with a random number generator (ava i lab le  as a dig- 
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regarded as a six-component random vector.  Since the  six components a r e  
uncorrelated with each other ,  such a vector  has, by de f in i t i on ,  a diagonal 
covariance matrix. Also t h i s  matrix has u n i t  elements on the  diagonal 
because the  individual  random numbers have u n i t  variance.  Thus, i f  u i s  
the  random vector,  i t s  covariance matrix U i s  

0 1 0 0 0 0  

0 0 1 0 0 0  

0 0 0 1 0 0  

0 0 0 0 1 0  

0 0 0 0 0 1  - 

EuuT = u = 

Now it i s  apparent t h a t  by sca l ing  the  random numbers which comprise the com- 
ponents of u by, say, multiplying the f i r s t  by a constant 01, the  second 
by 02, e t c . ,  there  i s  obtained a random vector w with covariance matrix 

Furthermore, i f  we apply a l i n e a r  transformation t o  the scaled vector ,  

w '  = Qw 

we obtain a new ( r e l a t e d )  random vector  whose covariance matrix i s  not  
diagonal : 

1 E w ' w I T  = Q,EwwTQT 

= QWQT = w' 

Thus, s t a r t i n g  with independent gaussian random numbers, random vectors  can 
be constructed having any des i red  s t a t i s t i c a l  p roper t ies  (as expressed by a 
covariance matr ix) .  

9 



I n  order t o  use t h i s  procedure it i s  necessary t o  diagonalize the  covar- 
iance matrices of each of the  random var iab les  i n  the  problem t o  obtain the  
cr sca le  f a c t o r s  and the  Q transformation matrices t o  be used i n  generating 
the  Ai and Vcei from the random numbers. Thus, a diagonal iz ing rout ine 
must be p a r t  of t he  Monte Carlo machine program. 

I n  summary, the  Monte Carlo program cons i s t s  of t he  following sect ions:  

(1) Random number generator 
(2)  Diagonalizing rout ine 
(3)  Equations (l5), (16), and (1.7) 
(4 )  S t a t i s t i c a l  ana lys i s  computations 

Inputs t o  the program are  the covariance matrices of the  Axi and vcei ran- 
dom variables ,  and the  ( P i  t r a n s i t i o n  matrices and B i  guidance l a w  m a t r i -  
ces.  These a re  computed beforehand i n  a run of t h e  complete simulated 
guidance problem. 

A 

.RESULTS AND DISCUSSION 

A FORTRAN 7094 computer program w a s  wr i t ten  t o  t e s t  the pr inc ip les  out-  
l i n e d  i n  the  Analysis sec t ion  and t o  obtain some numerical r e s u l t s  f o r  use i n  
studying the  general  cha rac t e r i s t i c s  of t he  s t a t i s t i c s  of midcourse ve loc i ty  
correct ions.  The program w i l l  not be described i n  d e t a i l  here, except t o  
s t a t e  t h a t  the  s t a t i s t i c s  computed were the  d i s t r i b u t i o n  function, the den- 
s i t y  function, the mean, and the r m s  value of each of the ve loc i ty  correc- 
t i ons  and of the  t o t a l  AV. 

The circumlunar mission employed as an example has been described pre-  
viously.  The assumed nominal circumstances pe r t inen t  t o  the present  problem 
a re  : 

Correction mechanization e r r o r s  ( r m s  va lues) :  
1 percent i n  magnitude of the  cor rec t ion  
1' i n  d i r ec t ion  
0.1 m/sec i n  cut-off 

In j ec t ion  e r r o r s  ( r m s  va lues) :  
1 km and 1 m/sec i n  each of the  three  d i rec t ions  

i n  a geocentric coordinate system 

Test r e s u l t s  were obtained f o r  t h i s  nominal s i t u a t i o n  and three  va r i a -  
t i ons  thereon: 

(1) No ve loc i ty  cor rec t ion  mechanization e r r o r s  
( 2 )  Twice-nominal correct ion mechanization e r r o r s  
(3)  Five-times-nominal i n j ec t ion  e r r o r s  

10 
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These cases were expected t o  give a f a i r  idea  of the  e f f e c t  on AV sta- 
t i s t i c s  of cor re la t ion  between successive ve loc i ty  correct ions.  

Figures 2 t o  5 show the  sample d i s t r i b u t i o n  and dens i ty  functions f o r  
each of the ve loc i ty  correct ions and f o r  the t o t a l  
conditions described. Each run has a sample s i z e  of 5000. Table I gives the  
99-percent probabi l i ty  poin ts  ( taken from the sample d i s t r ibu t ion ' cu rves ) ,  
the  means, and r m s  values.  
covariance matrices) a r e  a l s o  given f o r  the ind iv idua l  correct ions.  

AV, f o r  each of t he  four  

The theo re t i ca l  r m s  values (obtained from the 

A general  comment which may be made regarding the  densi ty  functions i s  
t h a t  they a re  noticeably nongaussian, so  t h a t  gaussian approximations a re  a p t  
t o  be considerably i n  e r r o r ,  e spec ia l ly  with respect  t o  the  t a i l s  of the d i s -  
t r i bu t ions .  
t he  most useful  piece of da ta  i s  the d i s t r i b u t i o n  funct ion which can be used 
t o  determine how much ve loc i ty  cor rec t ion  must be provided f o r  a desired 
probabi l i ty  of success. 
there  w i l l  be enough f u e l  t o  s a t i s f y  ve loc i ty  cor rec t ion  demands i n  a l l  but  
1 percent of f l i g h t s  having the same c h a r a c t e r i s t i c s . )  
always concerned with the  t a i l s  of the  d i s t r ibu t ions .  Thus, a r a the r  l a r g e  
Monte Carlo sample i s  required i f  the  sample da ta  from which the  t a i l  charac- 
t e r i s t i c s  a re  determined a r e  t o  be s t a t i s t i c a l l y  s ign i f i can t .  

For an a p r i o r i  determination of the  amount of f u e l  required,  

(A  99-percent p robab i l i t y  of success here means t h a t  

The designer i s  here 

One of the  p r inc ipa l  r e s u l t s  t o  be obtained from the  Monte Carlo s ta t is-  
t i c s  i s  an ind ica t ion  of how conservative i s  the  use of the gaussian uncor- 
r e l a t e d  assumption f requent ly  employed t o  determine the  f u e l  requirements. 
Spec i f ica l ly ,  we would l i k e  t o  determine: 
rms AV 
how much l e s s  than three  times the rms e r r o r  f igu re  i s  required t o  assure 
99.74 percent mission success? The data  f o r  answering these questions i s  
compiled i n  t ab le  I1 f o r  each of the four s i t u a t i o n s  simulated. The correc- 
t i o n  v e l o c i t i e s  corresponding t o  68.26-, 95.44-, and 99.74-percent probabil-  
i t i e s  a r e  taken from the appropriate AV d i s t r i b u t i o n  curves. Also given 
a r e  the Monte Carlo r m s  f igures ,  AV,,,; the  sums of the  individual  correct ion 
r m s  values,  Cvrms; and th ree  times the l a t t e r .  

It i s  seen t h a t  the  difference between cvrms and AV,, 

(1) How much g rea t e r  than the t rue  
i s  the sum of the  r m s  values of the  ind iv idua l  correct ions,  and (2)  

ranges from 
3.3 percent t o  1 2 . 1  percent f o r  the four  cases,  the  l a r g e s t  difference,  as 
expected, being i n  the s i t u a t i o n  where co r re l a t ion  between successive correc- 
t i o n s  i s  most pronounced - tha t  i s ,  the l a rge  cor rec t ion  e r r o r  case. The 
smallest  percentage d i f fe rence  i s  i n  the  case with five-times-nominal i n j ec -  
t i o n  e r ro r s ,  the reason being t h a t  here the  AV i s  dominated by the f i r s t  
cor rec t ion  and co r re l a t ion  i s  therefore  r e l a t i v e l y  l e s s  s ign i f i can t .  

The difference between the  99.74 percent and th ree  CvrF f igu res  i s  
seen t o  be subs tan t ia l ,  ranging as high as 43.3 percent.  
the  e r r o r  which would be made i n  assuming AVrms = Cv,, 
gaussian d i s t r ibu t ion .  The conclusion i s  t h a t  i f  f u e l  tankage i s  designed by 
such a ru le ,  an unnecessary reserve w i l l  be allowed. Or, looking a t  it 
another way, the p robab i l i t y  of mission success w i l l  be subs t an t i a l ly  g rea t e r  . 
than specif ied.  

This demonstrates 
and assuming a 
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Comparing the  data  i n  t ab le  I1 i n  another way, we see t h a t  the 99.74- 
percent points  range from 2.1 t o  2.7 times the  Cvr, f igures .  Thus, a s i m -  
p le  ru l e  f o r  using Cvrms data  t o  determine f u e l  requirements might be t o  
multiply Cv,,, by, say, 2.4 t o  obtain approximately the  99.74-percent point  
on the  AV probab i l i t y  d i s t r ibu t ion  curve. It w a s  pointed out previously 
t h a t  it has been the  prac t ice  t o  multiply by 3 t o  obtain t h i s  f igure ,  osten- 
s i b l y  on the  bas i s  t h a t  the  probabi l i ty  dens i ty  curve had a gaussian d i s t r i -  
bution. Since the  curve i s  not gaussian the multiplying f ac to r  i s  less than 
3. With a f a c t o r  of 2.4, a saving of 20 percent i n  the f u e l  required f o r  
t h i s  port ion of t he  mission may be e f fec ted .  Depending on the  spec i f i c  si tu- 
a t ion  regarding the  magnitudes of i n j ec t ion  and ve loc i ty  correct ion e r ro r s ,  
the savings may be subs t an t i a l ly  more or less than 20 percent, which i s  t o  
say simply t h a t  a well-defined e r r o r  model f o r  the  system must be given 
before system performance can be f i n a l l y  specif ied.  

To complete the  discussion of the Monte Carlo results, some observations 
should be made regarding the  s t a t i s t i c a l  s ignif icance of the data.  A t e s t  
which i s  f a i r l y  simple t o  apply determines the  s ignif icance of the observed 
differences between the  sample and t h e o r e t i c a l  rms values shown i n  t ab le  I 
f o r  individual  ve loc i ty  corrections.  This t e s t  involves computing the  
expected var ia t ions ,  or standard deviations,  of t he  sample r m s  values and 
comparing these with the  observed var ia t ions .  F i r s t  w e  define the squared 
magnitude of a p a r t i c u l a r  ve loc i ty  correct ion as a new random variable ,  
Y = I v 12. The sample mean-square value obtained from a Monte Carlo run i s  
another random var iab le .  

- Clvl' y=- 
N 

where N i s  the  number of Monte Carlo samples of v. Now, by the  cen t r a l  
l i m i t  theorem, we can assume t h a t  
standard deviat ion given by 

y i s  normally d i s t r ibu ted  with mean and 

My- = E(Y) 

We, of course, know the  value of N used i n  a pa r t i cu la r  Monte Carlo run. 
We a l so  know the  covariance matrix of v, from which, because of the assumed 
(mul t ivar ia te )  normal d i s t r ibu t ion  of v, we can compute the expected values 
E(Y) and E(Y2). 

Performing these calculat ions f o r  a spec i f i c  ve loc i ty  correction, namely 
v1 My = 69.71 and 5- = 1.378. The 
sample value f o r  t h i s  case i s  70.52, which d i f f e r s  from i t s  expected (or 
mean) value by 0.81, o r  about 0.6 of one standard - deviation. Thus, the 
agreement between theory and the  observation Y i s  sa t i s fac tory .  Since the  
O y  i s  about 2 percent of Q, 
w i l l  have a standard deviat ion on the  order  of ha l f  of t h i s ,  or 1 percent.  
This ce r t a in ly  i s  a s m a l l  enough uncertainty f o r  t h i s  s t a t i s t i c  s o  t h a t  the  
rms f igures  given i n  t ab le  I are  reasonably r e l i a b l e  measures of the  theore t -  
i c a l  values. 

f o r  t he  nominal s i t ua t ion ,  we f i n d  t h a t  - Y Y 

it follows t h a t  t he  sample rms value, fi, 
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CONCLUDING REMARKS 

The r e s u l t s  shown indica te  t h a t  t he  Monte Carlo method i s  a p rac t i ca l  
technique f o r  obtaining the  s t a t i s t i c s  of midcourse ve loc i ty  correct ions.  
Obviously, extensions a re  possible  t o  various other  (approximately l i n e a r )  
problems i n  which covariance matrices have been computed. 

It should be noted t h a t  the  problem formulation employed i n  t h i s  paper 
includes the  assumption of l i n e a r  guidance l a w  matrices,  Bi. 
described here were t o  be used f o r  systems i n  which the  guidance ca lcu la t ions  
a re  nonlinear,  it would be necessary t o  determine a l i n e a r  approximation t o  
the  guidance l a w  t o  obtain the  appropriate B i  matrices.  Such a procedure i s  
seen t o  be r e l a t i v e l y  s t ra ightforward i f  one recognizes t h a t  i n  the  l i nea r i zed  
problem the  elements of B i  a r e  simply p a r t i a l  der iva t ives  of the ve loc i ty  
correct ion components with respec t  t o  the vehicle  pos i t ion  and ve loc i ty  s t a t e  
var iab les .  I n  some cases, ana ly t i ca l  expressions f o r  these p a r t i a l s  can be 
developed; i n  other  cases, per turbat ion techniques can be employed i n  the com- 
puter  simulation of the problem t o  obtain the  p a r t i a l s  numerically. 

If the technique 
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APPENDIX 

THE VELOCITY CORRECTIONS EXPRESSED AS LINEAR FUNCTIONS 

OF A SET OF UNCORRELA?IED RKNDOM VARIABLES 

I n  the  statement of the midcourse guidance problem, the i t h  ve loc i ty  
correct ion i s  wr i t ten  as a l i n e a r  funct ion of t he  est imated state, $i, and 
the  cor rec t ion  mechanization e r ro r ,  vcei: 

A 
The 
herein employed. However, i n  general ,  these quan t i t i e s  w i l l  not be uncorre- 
l a t e d  with corresponding components of the  o ther  v e l o c i t y  correct ions.  For 
the sake of f a c i l i t a t i n g  the design of a Monte Carlo s t a t i s t i c a l  ana lys i s  
procedure, we would l i k e  t o  "orthogonalize" the  s e t  of random var iab les  
X ~ J  vce$, ... 
dom var iab les  i n  terms of which the v i  could be expressed. 

vcei and X i  are assumed uncorrelated with each o ther  i n  the  e r r o r  model 
- 

A i n  the sense of f ind ing  an equivalent s e t  of uncorrelated ran- 

I n  l i n e a r  a lgebra the  Gram-Schmidt procedure f o r  orthogonalizing a s e t  
of l i n e a r l y  independent vectors  belonging t o  an inner  product space i s  well 
known. The same method can be used t o  orthogonalize a set of random v a r i -  
ables  by employing the covariance matrix of two random vectors  x and y i n  
the ro l e  of the  inner  product: 

where x i s  s a i d  t o  be "orthogonalf1 t o  y i f  (x,y) = 0, t h a t  i s ,  i f  t he  
covariance matrix E[xyT] i s  zero, or x and y a r e  "uncorrelated." Although 
we do not have here qui te  the s i t u a t i o n  i n  which one usua l ly  employs the  
Gram-Schmidt procedure, we can s t i l l  use e s s e n t i a l l y  thLs technique. 

From 
t h a t  

F i r s t  we need t o  e s t a b l i s h  some proper t ies  of the above function, (x ,y ) .  
known proper t ies  of the  expectat ion and matrix operators ,  it i s  seen 

1 T 
i) ( X , Y )  = ( Y , d  

ii) (x  + Y , Z )  = ( X , d  + ( Y , d  

I f  A i s  a matrix of constants,  then 

iii) (AX,Y) = A ( X , Y )  
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Now l e t  w1 ,w2 , . . . ,wn  be random vectors ,  and construct  another s e t  of 

1 random vectors,  yl , . .  . ,yn i n  the  following way: 

Y 1  = w 1  
1 

Y 2  = w 2  - ( W 2 , Y l ) ( Y 1 , Y l ) -  Y 1  

Y 3  = w 3  - ( w 3 , Y 2 )  ( Y 2 , Y 2 )  - ly2 - ( W 3 , Y l )  ( Y 1 , Y l )  - l Y 1  

(A4)  

Yn = wn - ( w n , Y n - i ) ( Y n - i , Y ~ - ~ ) - l Y n - i  

- . . .  (wn,Yl) ( Y 1 , Y 1 ) - l ~ l  

Although (x,y)  i s  not an inner product, it i s  seen from ( A 3 )  t h a t  it 
possesses a l l  the necessary proper t ies  of an inner  product which we require  
here, and the  procedure represented by ( A b )  i s  conceptually nothing but  the 
Gram-Schmidt process. 

Note t h a t  it i s  necessary i n  (Ab)  f o r  the  (yi,yi)-’ t o  e x i s t  f o r  
Since (yi,yi) = E[yiyiT] i s  the covariance matrix of i = 1, ..., n - 1. 

which i s  pos i t ive  d e f i n i t e  (except f o r  c e r t a i n  exceptional instances which 
require  spec ia l  t rea tment ) ,  ( y i , y i )  w i l l  always e x i s t .  

y i ,  

If the process ( A 4 )  i s  conceptually the same as the  Gram-Schmidt proce- 

We can prove that  t h i s  i s  so by showing t h a t  f o r  
dure, then we should expect t h a t  the random vectors  y1, . . . , y n  a re  orthog- 
onal ( i . e . ,  uncorrelated) .  
every m, 

(ym,y,) = o , 2 = 1, 2, . . . m - 1 (A5)  

Beginning with m = 2, we have 

For 
(y3,y1) and (y3,y2) a r e  zero. 
shown t h a t  f o r  every 2 < m, which i s  what w e  set  out  
t o  prove. By interchanging the  indices  2 and m it i s  seen t h a t  t h i s  r e s u l t  
implies t h a t  

m = 3, we f i n d  by applying the same method and u t i l i z i n g  ( A 6 )  that  both 
Continuing i n  the  same manner, it i s  r e a d i l y  

m, (y,,y,) = 0 f o r  all 
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(Y,,Y,) = o f o r  a l l  2 # m (A7) 

Thus, the  random vectors  
expected. 

yl,. . . yyn are orthogonal (uncorrelated)  as 

able  
e t c .  

I n  order t o  apply the  formulas (A4) t o  our spec i f i c  problem, we mugt Re 
t o  wri te  expressions f o r  covariance matrices,  such as (xiyvcej)  , ( x i , x j )  , A 

, which express the  cor re la t ion  between the  p a i r s  of random var iab les .  
To f i n d  expressions f o r  these matrices,  w e  must go back t o  the theory of l i n -  
ear optimal es t imat ion as given i n  references 1 and 3. The development pro- 
ceeds as follows. 

A We begin by showing t h a t  mi, the change i n  the estimate due t o  a s e t  
of observations between the  (i - 1) and i t h  ve loc i ty  corrections,  i s  uncor- 
r e l a t e d  with the  est imate  a t  the  beginning of t he  in t e rva l .  Assume a s e t  of 
k observations.  The est imat ion equation f o r  t he  j t h  observation i s  

o r  

= K.[y - M-x? A 1 
J j J J-1 

where $3 i s  the est imate  (based on j observations) of the s t a t e  vector  
augmented t o  include the  cor re la ted  observation e r r o r s  (see r e f s .  1 and 3 ) .  
The y j  i s  the observation, 

y j  = M j + ( t j )  

= H j x ( t j )  + n ( t j )  (QO) 

where x i s  the vector  of vehicle  pos i t ions  and ve loc i t i e s ,  and n i s  the 
addi t ive observation e r r o r .  

Now using equation ( A l O )  i n  equation (Ag), and invoking the de f in i t i on  
A of est imat ion e r ro r ,  Z* = x* - x*, we obtain 

&? = K.M.X'A. ( t j )  J J J J-1 

Now the propagation of es t imat ion e r r o r  between observations i s  given by 

where 
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The i s  the t r a n s i t i o n  matrix for the  augmented system i n  which the  
observation e r r o r s  are regarded as addi t iona l  state var iables;  On 
appropriate submatrix of O*, and i s  dimensioned so that  the  n; adds only 
t o  t h a t  p a r t  of 3 associated with the  observation e r ro r s .  

@* 
i s  the  

Subs t f tu t ion  of (Al.2) i n t o  ( A l l )  gives an equation f o r  i n  t e r m s  of 
J 3 and n j :  

J -1 
A* 

= K . M . @ * ( t .  t )2? ( t .  ) + K.M.n'. 
Dxj J J J' j-1 j-1 J-I J J J  (Al.4) 

By induction, it i s  apparent t h a t  
of t he  
j vectors  n i ,  ..., n;. Likewise, the t o t a l  change i n  the est imate  due t o  
observations i n  the interval is 

can be expressed as a l i n e a r  funct ion 
vector  a t  the  beginning o$ the  sequence of observations and the  

k 

j=i 

and t h i s  i s  therefore  a l i n e a r  funct ion of Now, the  prop- 
e r t y  of an optimal l i n e a r  es t imate  i s  t h a t  the  est imate  and e r r o r  i n  es t imate  
a re  orthogonal ( r e f s .  1 and 3);  t h a t  i s ,  

2; and n i , .  . .,$. 

E;@:* = 0 ( A m  

A l s o ,  the  quan t i t i e s  n! 
J i n t e r v a l  ( t j - l , t j ) ,  or 

a re  uncorrelated with any random vector  outs ide the  

j = l , .  . . , k  (Al.7) A* 1 Exonj = 0 , 
Hence, i s  uncorrelated with $$, or 

A By s i m i l a r  reasoning, we a r r i v e  a t  the conclusion t h a t  a l l  the  hi are  
uncorrelated with each other ,  with any previous est imate ,  o r  with any pre- 
vious cor rec t ion  mechanization e r ro r :  

Also, by assumption, (^xi,Vcei) = 0 .  

Returning t o  the appl ica t ion  of the  expressions (A4) t o  t he  midcourse 
ve loc i ty  cor rec t ion  problem, we can now w r i t e :  
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To evaluate  the  covariance matrices,  w e  s u b s t i t u t e  

From t h i s  it i s  evident  t h a t  

Proceeding i n  l i k e  manner, w e  see t h a t  the required orthogonal random v a r i -  
ables a re  .&l,vcel,. ..,&n,vcen, where n i s  the  number of ve loc i ty  correc-  
t i o n s  considered. 

A t  t h i s  po in t  it i s  easy t o  see the  e r r o r  which has been made i n  re f -  
erence 4. 
e r r o r  i s  uncorrelated with the  ac tua l  state, and that the  est imat ion e r r o r  
after m + n observations i s  uncorrelated with t h a t  previously obtained from 
m observations.  T h a t  t h i s  i s  not  so i s  r e a d i l y  determined e i t h e r  by a d i r e c t  
appl ica t ion  of c e r t a i n  r e l a t i o n s  developed above or by a unique argument t o  
the e f f e c t  t h a t  there  i s  only one possible  complete se t  of uncorrelated ran-  
dom var iab les ,  namely, the se t  given above. 

I n  e f f e c t ,  the  authors  of reference 4 assume t h a t  t he  est imat ion 



REFERENCES 

1. Smith, Gerald L., Schmidt, Stanley F., and McGee, Leonard A.: Applica- 
tion of Statistical Filter Theory to the Optimal Estimation of Position 
and Velocity On Board a Circwolunar Vehicle. NASA TR R-135, 1962. 

2. McLean, John D., Schmidt, Stanley F - j  and McGee, Leonard A.: Optimal 
Filtering and Linear Prediction Applied to a Midcourse Navigation Sys- 
tem for the Circumlunar Mission. NASA TN D-1208, 1962. 

3. Smith, Gerald L.: Secondary Errors and Off-&sign Conditions in Optimal 
Estimation of Space Vehicle Trajectories. NASA TN D-2129, 1964. 

4. Skidmore, Lionel J., and Penzo, Paul A.: Monte Carlo Simulation of the 
Midcourse Guidance for Lunar Flights. AULA Journal, vol. 1, no. 4, 
April, 1963, pp. 820-31. 

20 



TABU I. - SAMPLE STATISTICS 

- . .  - - -  

S a q l e  mean 
Sample r m s  
Theoretical  rms 
- . -  - . -  -- - . .. 

Condition I 
s t a t i s t i c ,  I 

I . .  
met e r s / s e c 

N o  ve loc i ty  correct ion 
e r r o r  
99-percent p robab i l i t y  
Sample mean 
Sample r m s  
Theoretical  rms 

- 

Nominal - 
99 -per cent p robab i l i t y  
Sample mean 
Sample r m s  
Theoretical  rms 

Two ~~ -times-nominal veloc- 
i t y  -correct ion e r r o r  
99-percent p robab i l i t y  
Sample mean 
Sample rms 
Theoretical  r m s  

- 

Five times i n j e c t i o n  
e r r o r  
99-percent p robab i l i t y  

Velocity cor rec t ion  
- - 

v1 
.. 

21.45 
6.74 
8.39 
8.41 , 

21.50 
6.74 
8.40 
8.40 

25.41 

8.41 
8.41 

6.75 

107.0 
33-82 
42.14 
42.13 
- - -  
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S t a t i s t i c ,  
me t e r s / se  c 

6826 

AVO. 9544 

AVrms 

'vrms 
3 cvrms 

3974 

+- 
3Cvrms - AVO. 3974 

No ve loc i ty  
corre  c t ion  

e r r o r  

12.02 

21.83 
31-25 
11 * 75 
12.69 
38.07 

* 94 
(8.0%) 

6.82 
(21.8%) 

2.46 

- ~- 

_ _  

_ _  

- _  

Condition 
~~ - 

Nominal 

13.95 
23-78 
33-40 
13-43 
14.87 
44.61 

1.44 
(10.7%) 

( 3 3 * 6% ) 

2.25 

11.21 

- 

Two-times- 
nominal 

ve loc i ty  
cor rec t ion  

e r r o r  

16.17 
25.77 
35.80 
15.26 
17.11 

51-33 

1.85 
(12.1%) 

15-  53 
(43.3%) 

2.09 

_. 

- 

.~ 

Five -time s - 
nominal 
ve loc i ty  

cor rec t ion  
e r r o r  

53.7 
103.9 
148.0 

53.13 
54.87 

164.61 

1.74 
(3.3%) 

(11.2%) 

2.70 

16.61 

- - 
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Figure 1. - Schedule of observations and veloci ty  corrections. 



.07 

.a 1- 
.06 - 

.6 - 

.4 - 

.2 - 

0 -  

Z 

I- 
o 
Z 
3 
LL 

> 
I- 
v, z 
W 

0 . 0 5 -  - 

.04 - 

- 

n .03- 

.02 

.o I 

DISTRIBUTION FUNCTION / 

In DENSITY FUNCTION 

DISTRIBUTION FUNCTION 

- 

0 5 IO 15 20 25 30 35 
CORRECTION VELOCITY ,VI ,meters/sec 

(a)  F i r s t  ve loc i ty  correct ion.  

15 2 0  25 30 35 0 5 IO 
CORRECTION VELOCITY,V2, meters lsec  

( b )  Second ve loc i ty  correct ion.  

Figure 2 .- S t a t i s t i c a l  cha rac t e r i s t i c s  of t he  ve loc i ty  correct ions for t he  nominal case.  



.2 

.07 - 

- 

L 

.06 - i 
DISTRIBUTION FUNCTION 

.05 - 

.04 - i 

.03 

.02 

.o I 

DISTRIBUTION FUNCTION 

DENSITY FUNCTION 

0 0 I 2 3 4 5 0 

CORRECTION VELOCITY,V3 ,meters/sec 

( c )  Third veloci ty  correction. 

2 4 6 a IO 
CORRECTION VELOCITY ,V4,  meters lsec  

(d) Fourth veloci ty  correction. 

Figure 2.-  Continued. 



[\3 m 
I .o 

.8 

0 

.08 

.07 

.06 

.05 
0 
k 
0 z 
3 

> 
cn z 

.04 

k 

.03 

.o 2 

.o I 

DISTRIBUTION FUNCTION 

'I: 
DENSITY FUNTION 

i Z J  

DISTRIBUTION FUNCTION f 

DENS1 TY 

ii 
FUNCTION 

I %- - I I I I I - v 
IO 20 30 40 50 

I 

0 2 4 6 0 IO 0 
CORRECTION VELOCITY, Vg, meters/sec 

( e )  F i f t h  ve loc i ty  correct ion.  

SUM OF CORRECTION VELOCITY, AV, meters/sec 

(f) Sum of veloc i ty  correct ions.  

Figure 2 .  - Concluded. 



1 .o 

.8 

z 
0 
$ .6 
Z 
3 
LL 

z 
I- 
3 

e 
m 
cn 
n 

E .4 

.2 

0 

.08 - 

.07 

.06 

z .05 
0 
I- o z 
3 
L .04 
t - cn z 
W 
CI .03 

.02 

.o I 

0 5 IO 15 20 25 30 
CORRECTION VELOCITY, VI, meters/sec 

( a )  F i r s t  veloci ty  correct ion. 

FUNCTION 

l.n DENSITY FUNCTION 

0 I 2 3 4 5 6 
CORRECTION VELOCITY, V,, metershec 

( b )  Second veloci ty  correction. 

Figure 3 .- S t a t i s t i c a l  charac te r i s t ics  of the  veloci ty  corrections f o r  the  case with no veloci ty  
correction e r ro r s .  



1.0 

.8 

z 
Q 

.6 - 
z 
3 '  
L L  

z 
I- 
3 

0 

E 
lx .4 - 

E 
k3 

.2 - 

- 
0 

.08 

.07 

.06 - 

0 

z 
3 

>- 
cn z 
W 

.04 - 

trr 

* .03 - 

.02 - 

,01 - I , ,  
f f  

/ DISTRIBUTION FUNCTION 

DENSITY FUNCTION 1'1 G 
I 

I 2 3 4 5 
0 Y 

0 
CORRECTION VELOCITY, V3, meters/sec 

( e )  Third ve loc i ty  correct ion.  

FU NCTl ON 

FUNCTION 

I 

0 2 4 6 8 IO 
CORRECTION VELOCITY, V4, meters/sec 

( d )  Fourth ve loc i ty  correct ion.  

Figure 3.- Continued. 



. 08 -  7 1.0 - 

.8 - 

.07 

.06 

z .05 
0 
L z 
3 
LL .04 

I- 
> 
cn z w 

.03 

.02 

.o I 

0 

DISTRIBUTION 

r -!i 
FUNCTION 

DENSITY FUNCTION \ 

/ DISTRIBUTION FUNCTION 

-h  
- 1 1  4 

DENSITY FUNCTION 

I 
I 

.2 .4 .6 .8 1.0 1.2 1.4 0 9 18 27 36 45 

(f) sum of veloci ty  corrections.  

CORRECTION VELOCITY, V5, meters/sec SUM OF CORRECTION VELOCITIES, AX meters/sec 

( e )  F i f th  veloci ty  correction. 

Figure 3. - Concluded. 



W 
0 

I .o 

.a 

z 
0 

.08 

.07 

.06 

I- $ .05 
O .6 - z J 
LL 

z 
I- 
3 

G 

m 
2 n 

E . 4 -  

.2 - 

- 
0 

Figure 

- 
I- 
O z 
3 
LL 

>- 
cn z 
w 

.04 
k 

n .03 

.02 

.01 

DISTRIBUTION FUNCTION DISTRIBUTION FUNCTION /i 

DENSITY FUNCTION DENSITY FUNCTION 

I 

0 IO 20 30 40 50 60 0 I 2 3 4 5 6 
CORRECTION VELOCITY, VI, meterslsec CORRECTION VELOCITY, V2, meterslsec 

(a )  F i r s t  ve loc i ty  correct ion.  ( b )  Second ve loc i ty  correct ion.  

4 . -  Statist ical  cha rac t e r i s t i c s  of t he  ve loc i ty  correct ions f o r  t he  case with twice nominal 
ve loc i ty  correct ion e r r o r s .  



I .o 

.8 

Z 
0 
I- o 
3 
LL 

z 
0 
I- 
3 

- 

z .6 

- 

m 
L11 .4 

E 
n 

- 
I- 

.2 

0 

.07 .08- - 7 

.06 - 

z -05 - 
2 
I- o 
Z 
3 

>- 
I- 
cn z 

.04- 

- 

.03 

.02 

.01 

0 

TRlBUTlON FUNCTION 

\ DENSITY FUNCTION 

STRIBUTION FUNCTION 

I 2 3 4 5 6 0 2 4 6 8 IO 12 
CORRECTION VELOCITY, V3 , meterslsec CORRECTION VELOCITY, V4 ,  meterslsec 

( e )  Third veloci ty  correction. (d)  Fourth veloci ty  correction. 

Figure 4 .  - Continued. 



W 
rc 

I 
I 

.8 - 

z 
0 

z 
3 
LL 

- 
.6- 

.2 - 

- 
0 

DI STRl BUT ION FUNCTION i 

0 5 IO 15 20 25 
CORRECTION VELOCITY, V5, meters/sec 

( e )  F i f t h  ve loc i ty  correct ion.  

SUM OF CORRECTION VELOCITIES, AV,meters/sec 

(f) sum of ve loc i ty  correct ions.  

Figure 4 . -  Concluded. 



1.0 - .08 - 

.07 - 

.8 - 

> 
cn 
Z 
W 

k 

.03 - 

.02 

.o I DENSITY FUNCTION 

I ” _  _ ,  
0 0 25 50 75 I O 0  125 150 0 I 2 3 4 5 6 7 

CORRECTION VELOCITY, VI, metershec CORRECTION VELOCITY, V2, metershec 

(a)  F i r s t  veloci ty  correct ion.  (b) Second veloci ty  correction. 

Figure 5 . -  S t a t i s t i c a l  charac te r i s t ics  of the veloci ty  corrections for the  case with f i v e  times 
w nominal inject ion e r ro r s .  
bJ 



w c- 
.08 

.07 

.06 

I .o - 

- 

;- 

.8 1- 

z 
0 

.2 - 

- 
0 

.04 - i 

.03 

.02 

.o I 

0 I 2 3 4 5 

D I S T R l  BUT1 ON FUNCTION 

..- J 
0 5 IO 15 20 2 5  30 

CORRECTION VELOCITY lV3  m e t e r s l s e c  CORRECTION VELOCITY V 4  meters /sec 

(a )  Fourth ve loc i ty  correct ion.  ( e )  Third ve loc i ty  correct ion.  

Figure 5 .  - Continued . 



g 
P 
Y 1.0 - .08 - 
e 
(0 m 5. 

.07 - 

.8 - 

.06 - 

Z 
0 $ .05 -  - 

. 6 -  ,y 
z 0 
3 Z 

3 LI 
~ 

LI .04- Z 
0 2. 

i- 

E . 4 -  = 
- I- 

3 cn m 
~ 

I- 
E 
n 

.2 

0 

W a .03 

.02 

.o I 

0 2 4 6 8 IO 
CORRECTION VELOCITY,V5 ,meters/sec 

( e )  F i f t h  veloci ty  correction. 

DISTRIBUTION FUNCTION 

DENSITY FUNCTION 

0 
0 50 I O 0  I50  200 250 
SUM OF CORRECTION VELOCITIES,AV, m e t e r s l s e c  

(f) Sum of veloci ty  correct ions.  

Figure 5 .  - Concluded. 



“The National Aeronautics and Space Administration . . . shall . . . 
provide for the widest practical appropriate dissemination of information 
concerning its activities and the resuults thereof . . . objectives being the 
expansion of human knowledge of phenomena in the atmosphere and space.” 

- - N A r m N I L  A m o a ~ u n c s  m u  SPACE A m  OF 19% 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles or meeting papers. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results of individual 
NASA-programmed scientific efforts. Publications indude conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details an the availabil i ty of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


